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ABSTRACT 

Enrique Reef it is located in southwestern Puerto Rico at La Parguera. This reef presents various 

habitats such as sand, corals reefs and seagrasses. The classification of a complex marine habitat 

such as this is a difficult  process. For this purpose a spectral unmixing approach was chosen. 

The unmixing decomposes a mixed pixel into a collection of endmembers and a set of fractional 

abundances that indicate the proportions of each endmember. A series of steps to reach a good 

classification were considered before applying the Liner Spectral Unmixing (LSU). A Minimum 

Noise Fraction (MNF) transformation was made to minimize noise. The Pixel Purity Index (PPI) 

is a means of  finding the most "spectrally pure" pixels in the image. The most spectrally pure 

pixels typically correspond to mixing endmembers. After these processes, three endmembers 

were chosen seagrasses, mangroves and sand to apply the unmixing model to IKONOS imagery 

for estimating cover fractions and to complete and compare supervised and unsupervised 

classification after LSU. The fractions of seagrasses, sand and mangroves within the pixels did 

not worked as expected because the classifications generated misclassified the classes and the 

fraction cover data produce negative values. 
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INTRODUCTION 

All Earth surface materials have specific spectral features, which are related to their composition.  

In an image, within a pixel various components are present, but regularly the algorithms for 

classification can not identify more than one class within the pixel; is for this reason that spectral 

unmixing is used. It is often the case in remote sensing that one wants to deal with identification, 

detection and quantification of fractions of the target materials for each pixel for diverse 

coverage in a region using unmixing approaches to discern the proportion of heterogeneity 

(Kanniah et al., 2001). Conventional satellite remote sensing classification procedures yield 

thematic coarse resolution data with only one class per pixel (Kanniah et al., 2001). Mixed pixels 

problem in remotely sensed satellite data often results in poor classification accuracy (Kanniah et 

al., 2001). Mixed pixels are problematic for statistical classification methods because most 

algorithms are based on the assumption of spectral homogeneity at pixel scale within a particular 

class of land cover (Small, 2003). The spectral unmixing method used for this project was Linear 

Spectral Unmixing (LSU). Linear mixture modeling assumes that the signal received at the 

satellite sensor depends on the proportion of individual surface components such as soil, water 

and vegetation present in a particular pixel and on the mixing process (Abdul Shakoor, 2003). 

The unmixing decomposes a mixed pixel into a collection of endmembers and a set of fractional 

abundances that indicate the proportions of each endmember. The contribution of each pixel is 

assigned in proportion to the percentage area each ground cover class occupies in that mixed 

pixel (Boardman, 1989). An endmember is a “pure” spectrum of a material or target and has a 

unique spectral signature. Image Endmembers are pure pixels from image itself. For this study, 

three endmembers were identified and then extracted from the image data for spectral unmixing 

purposes. The endmember selection included the following components: seagrasses, mangroves 

and sand. In order to do the spectral unmixing, good endmembers had to be chosen. The desire to 



extract from a spectrum the constituent materials in the mixture, as well as the proportions in 

which they appear, is important to numerous tactical scenarios where subpixel detail is valuable 

(Keshava, 2003). The importance of the spectral unmixing lies in its ability to improve the 

subpixel data and give realistic info. To execute the relevant work a series of objectives were 

resolute:  

1. understand what is spectral unmixing,  

2. apply the unmixing model to IKONOS imagery for estimating cover fractions of 

seagrass, sand and mangrove within the pixels  

3. complete and compare supervised and unsupervised classification after LSU from 

Enrique Reef  

METHODS 

Study area: Enrique Reef is located in southwestern Puerto Rico at La Parguera. This reef 

presents various habitats such as sand, mangroves, corals reefs and seagrasses. Also, it is one of 

the most extensive keys in La Parguera and hence the ecosystems can be easily differentiated in 

an IKONOS image.  

Sensor: The sensor to be used is a high resolution satellite, IKONOS. Launched in 1999, revisit 

time 3 days, with a radiometric resolution of 8bits. The imagery that was used is from February 

19, 2006. This image contains 3 bands one in the red part of the spectrum, one in the green and 

one in the blue. The recent availability of images from high spatial resolution satellite sensors 

like IKONOS and Quickbird enable the mapping of land covers more accurately and they can 

also substitute the higher cost of airborne images (Kanniah et al., 2001). In a study conducted by 

Mumby and Edwards (2002) they compared an IKONOS image with other remote sensing 



images like Landsat TM, SPOT, CASI etc. and they found that the fine spatial resolution image 

of IKONOS could obtain a better thematic accuracy in mapping marine environments. The 

applications of this sensor includes: urban and rural mapping of natural resources and of natural 

disasters, etc.  

LSU: The images were analyzed using ENVI 4.1 software. First a dark pixel subtraction was 

completed in order to correct glint and complete an atmospheric correction; also a mask was 

built and applied to deep water pixels which are not considered any further. A Minimum Noise 

Fraction (MNF) transformation was made to minimize noise. This transformation identifies the 

locations of spectral signature anomalies. It assumes that an observed signal is being linearly 

mixed with a noise source which is uncorrelated with the true signal (ENVI Help 4.1). With 

IKONOS imagery, the MNF transformation usually produces principal components similar to 

those resulting from a traditional covariance-based PC rotation but offers the added benefit of 

normalizing the eigenvalues relative to the variance of the sensor noise estimate (Small, 2003). 

Then the MNF bands were used for the determination of Pixel Purity Index (PPI). The Pixel 

Purity Index (PPI) is a means of finding the most pure pixels in the image. The most spectrally 

pure pixels typically correspond to mixing endmembers. The Pixel Purity Index is computed by 

repeatedly projecting n -dimensional scatter plots onto a random unit vector (ENVI Help 4.1). 

The extreme pixels in each projection are recorded and the total number of times each pixel is 

marked as extreme is noted (Stein et al., 1999). A Pixel Purity Index (PPI) image is created in 

which the DN of each pixel corresponds to the number of times that pixel was recorded as 

extreme (ENVI Help 4.1). This type of tecnique has been developed to extract endmember 

spectra automatically from remotely sensed data (Stein et al., 1999). The algorithm finds 

appropriate spectra for endmembers. After these processes, three endmembers were chosen 



seagrasses, mangroves and sand. A bad endmember selection and identification can lead to 

meaningless fraction cover maps. These endmembers are then used for Linear Spectral 

Unmixing (LSU) and classification.  LSU assumes that (i) spectral variation is caused by a 

limited number of surface materials (i.e. soil, water, shadow, vegetation), (ii) the pixel is a linear 

mixture of its constituents and (iii) all endmembers possibly contained in the pixel have been 

included in the analysis (Kanniah et al., 2001). During the unmixing process, a unit sum 

constraint was applied by adding a weighting factor of one because the sum of abundances is 

theoretically 1. This is the default unmixing algorithm.  A summary of the methods is presented 

in fig 1. 

 

 

 

Figure 1. Methods diagram 

 

RESULTS AND DISCUSSION  

Figure 2 (a, b and c) shows the grayscale images of Enrique reef and the fraction cover product 

for each endmember. The fraction value ‘1’ is represented by white color and ‘0’ is represented 

by black color. The results obtained with this method is summarized in Table 1 where a number 
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of ten pixels were chosen to see and compare fraction cover estimation for each pixel. The values 

ranges for those pixels are -7.82 to 3.77. The fraction cover values obtained were not expected 

because negatives values are found in the images. A unit sum constraint was applied by adding a 

weighting factor of one to achieve the sum of abundances equals to one, however the sums of the 

values are greater than one.  Figure 3 (a, b, c and d) illustrates the four classification made after 

the spectral unmixing: two of the classifications are supervised minimum distance and maximum 

likelihood and two unsupervised kmeans and iso data. The classifications generated produced a 

misclassification in the minimum distance seagrass areas are confused with sand, in the max 

likelihood the sand areas are classified as mangroves. The unsupervised classification presented 

two classes (class 1 and 2) that dominate the data. Classification errors can occur when the signal 

of a pixel is ambiguous, perhaps as a result of spectral mixing, or due to overlap of spectral 

reflectance or when the signal is produced by a cover type that is not accounted for in the 

training process (Kumar et al., 2007). The principal reason for the misclassification is due to the 

poor spectral differentiation of the pure pixels between mangrove and seagrass fig 4. The results 

of classification and fraction covers did not worked as expected and new endmembers were 

applied to the data; step four in fig 1 was modified. The new endmembers include sand, seagrass 

and soft coral. In addition the mangroves were masked to eliminate them from the analysis.  New 

fraction cover images were obtained; Figure 5 (a, b and c) shows the grayscale images of the 

fraction cover result for the new endmembers. The fraction value ‘1’ is represented by white 

color and ‘0’ is represented by black color. The results obtained with the new endmembers are 

summarized in Table 2 where the same ten pixels were chosen to see and compare fraction cover 

estimation for each pixel. The values ranges for those pixels are -3.26 to 5.60. Even though new 

endmembers were applied, the sums of the values were greater than one. Figure 6 (a, b, c and d) 



illustrates the new four classifications made after the spectral unmixing with the new 

endmembers. Both supervised classifications merge the data, as seagrass and deep water are 

classified as soft coral. Class 3 and class 2 dominates the data in the kmeans unsupervised 

classification and the isodata classification. The results improved but another modification to the 

methods was made. A Lyzenga’s water column correction was applied to remove the water 

column. Step two in fig 1 was modified; the MNF transformation was not taken into account. 

New fraction cover images were obtained and Figure 8 (a, b and c) shows the grayscale images 

of the fraction cover result for the new correction. The results obtained with the new correction 

are summarized in Table 3 where the same ten pixels were chosen to see and compare fraction 

cover estimation for each pixel. The values ranges for those pixels are -1.52 to 2.09. After the 

correction, the sums of the values were equal or less than one. Figure 9 (a, b, c and d) illustrates 

the new four classifications made after the new correction and the spectral unmixing. The 

classifications improved and the best classification achieved for this project was the maximum 

likelihood (fig 9b) however, in a second trial this classification did not had success (fig 9c).  The 

supervised classification enhanced the difference between soft coral and seagrass. Furthermore 

the unsupervised classification once again demonstrated the dominance of two classes; class 2 

and 3. In figures 7 and 10 we can see the improvement of the differentiation of the spectral 

endmembers after Lyzenga’s correction. 

CONCLUSION 

The Linear Spectral Unmixing is a tool to decompose the pixels into the abundance of its 

components. The application of the unmixing model to IKONOS imagery for estimating cover 

fractions of seagrass, sand and mangrove within the pixels did not worked as expected due to the 

poor spectral resolution of the image. After completing the supervised and unsupervised 



classification after LSU from Enrique Reef the best classification was minimum distance due to 

the errors in the maximum likelihood classification. The misclassification could occur when 

endmembers were mimicked by other spectra; this type of error could be avoided by knowing in 

advance what endmembers were spectrally similar (Adams et al., 1995). The fraction cover 

products for marine environments are not correct unless a water column correction is applied 

because of the additional mixing of the water signal with the components of interest that is 

detected by the sensor. 

RECOMMENDATIONS 

To improve this work it is important to compare the fraction covers to field data in order to 

verify the data obtained through the images.  In addition field spectral data is necessary to choose 

better endmembers and facilitate the selection of it also because a good choice of endmembers is 

the most important step for a good spectral unmixing. Mixed pixels may cover a region 

containing different classes of ground cover of varying proportions, and therefore alter the 

traditional image classification approach which assigns a particular class of ground cover to each 

pixel (Kanniah et al., 2001). The application of the MNF transformation to Lyzenga corrected 

images is recommended to test if the fraction cover data improved. Moreover the use of a 

hyperspectral images should fit better for spectral unmixing due to the spectral resolution of the 

images.  

 

 

 

 



 

FIGURES AND TABLES 
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Figure 2. Fraction image from IKONOS: (a) sand; (b) seagrass; (c) mangrove 

 

Pixel 
(X) 

Pixel 
(Y)  Sand  Seagrass Mangrove SUM 

5495 982 0.76 0.74 -1.89 1.5 
5553 1177 0.98 0.65 -0.07 1.63 
4894 1111 0.97 0.83 -0.07 1.80 
4959 998 -0.41 -0.50 0.31 -0.91 
5300 927 0.15 -0.01 -0.82 0.14 
5429 1130 -1.04 -6.78 3.11 -7.82 
5147 1109 -0.27 3.77 1.12 3.50 
5048 957 0.60 -1.15 -1.06 -0.55 
5416 894 0.89 1.89 -2.30 2.78 
5593 817 0.42 -0.34 -1.03 0.08 

Table 1. Enrique reef fractions cover estimation with endmembers of sand, seagrass and mangrove 
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Figure 3. Supervised and unsupervised classification images: (a) supervised minimum distance; (b) Supervised 
maximum likelihood (c) unsupervised kmeans; (d) unsupervised Isodata 

 

 

Figure 4. Spectra of endmember chose for LSU 
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Figure 5. Fraction image with new endmembers: (a) sand; (b) seagrass; (c) soft coral 

 



 

 

Pixel 
(X) 

Pixel 
(Y) Sand Seagrass Soft coral SUM 

5495 982 -0.70 -2.43 0.54 -2.59 
5553 1177 3.05 3.16 -0.61 5.60 
4894 1111 2.97 3.09 -0.65 5.41 
4959 998 -0.59 -0.30 0.28 -0.61 
5300 927 -0.71 -1.48 0.48 -1.71 
5429 1130 0 0 0 0 
5147 1109 0 0 0 0 
5048 957 0.62 -0.49 0.71 0.84 
5416 894 -1.24 -3.26 0.37 -4.13 
5593 817 -0.12 -1.12 0.55 -0.69 

Table 2. Enrique reef fractions cover estimation with endmembers of sand, seagrass and soft coral 
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 (d) 
Figure 6. Supervised and unsupervised classification images: (a) supervised minimum distance; (b) Supervised 
maximum likelihood (c) unsupervised kmeans; (d) unsupervised Isodata 

 

Figure 7. Spectra of new endmember chose for LSU 
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Figure 8. Fraction image Lyzenga’s water column correction: (a) sand; (b) seagrass; (c) soft coral 

 

 



 

Pixel 
(X) 

Pixel 
(Y) Sand Seagrass Soft coral SUM 

5495 982 1.37 0.14 -0.54 0.97 
5553 1177 2.09 0.33 -1.52 0.90 
4894 1111 2.08 0.34 -1.52 0.90 
4959 998 0.58 0.38 -0.03 0.93 
5300 927 1.04 0.19 -0.27 0.96 
5429 1130 0 0 0 0 
5147 1109 0 0 0 0 
5048 957 1.51 0.15 -0.72 0.94 
5416 894 1.38 0.16 -0.55 0.99 
5593 817 0.21 -0.29 1.01 0.93 
5046 956 -0.11 0.09 1.11 1.09 

Table 3. Enrique reef fractions cover estimation with endmembers of sand, seagrass and mangrove after Lyzenga’s 
water column correction  
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Figure 9. Supervised and unsupervised classification images: (a) supervised minimum distance; (b) Supervised 
maximum likelihood second trial (c) Supervised maximum likelihood (d) unsupervised kmeans; (e) unsupervised 
Isodata 



 

Figure 10 . Spectra of sand, seagrass and soft coral endmembers after Lyzenga’s correction  
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