Developing a protocol to use remote sensing as a cost effective tool to monitor contamination of mangrove wetlands

Johannes H. Schellekens, Fernando Gilbes-Santaella, Augustine Rodriguez-Roman, and Yomayra Roman-Colon

October 5, 2006
• Introduction
  – Remote sensing in mineral exploration or the search for chemical anomalies in the rocks
  – The effect of chemical anomalies on vegetation
  – Reflectance of vegetation
  – Mangroves
    • Importance of mangroves
    • Reflectance of mangroves
  – Remote sensing to monitor mangroves for metal contamination
Remote sensing in mineral exploration or the search for chemical anomalies in the rocks

- The use of images from space borne platforms for mineral exploration has the advantage of large area or synoptic coverage which allows for portrayal of the Earth on regional basis.

  TM 4/2 bright areas mark denser vegetation

  TM 7/5 hook-shaped area coincides with general altered zone. Band 7: hydrous minerals absorb radiation - dark

  3 km
Remote sensing in mineral exploration or the search for chemical anomalies in the rocks

- Kaolinite & alunite areas are a possible indication of a gold deposit.
- Quantitative analysis of multispectral bands allows the distinction and enhancement of certain compositional properties.

Kaolinite & alunite

Basalts

Andesite

Ratio color map: blue = 1/7, green = 4/2, and red = 3/1.

Principal Component Analysis

Kaolinite & alunite
Remote sensing in mineral exploration or the search for chemical anomalies in the rock.

- The direct observation of rocks and alteration zones in the tropics is hampered by the presence of thick soils and dense vegetation.
- However remote sensing techniques were developed to make use of the vegetation.
The effects of metals in the substrate of vegetation gives two types of responses in the vegetation:

**Taxonomic response**

**Structural response**
Remote sensing using vegetation

**Taxonomic response**

- Growth or non-growth, e.g.: “helecho de cobre”

---

**Structural response**

- Morphological: e.g. dwarfism
- Phenological: disturbance of natural rhythm
- Physiological: e.g. pigment synthesis

In mangroves we plan to use the physiological response, nl chlorophyll synthesis
Reflectance of vegetation

What electromagnetic waves are reflected by the leaves?

- Physiological changes: chlorophyll synthesis
What causes the reflection pattern?

Reflectance of vegetation

Leaf pigments
Cell structure
Leaf water content
Dominant factor controlling leave reflectance

Fig 3 Goetz et al, 1983
Studies of reflectance patterns and metal content of substrate yielded varying results.

Red spruce shows an increase in reflection in visible light and reduction in the Infra red.

This is not always the same for every tree species.

Reflectance of vegetation

![Graph showing reflectance of vegetation](image)
• Laboratory test
  – Effects of Cu-contamination on sorghum
  – Obvious reflection increase in visible light
  – Shift towards the blue wavelength of the infrared shoulder (blue-shift)
Remote sensing for mineral deposits using changes in the vegetation works, but with a lot of variables.

Remote sensing may be able to detect changes in the chlorophyll production caused by chemical anomalies in the substrate.

Can the technique also be used to detect metal contamination in mangrove wetlands?

A work in progress
Importance of mangrove wetlands

• Why mangroves?
  – The health of mangrove wetlands is of critical importance to society in tropical marine regions, including coastal protection, wildlife refuge, nursery of marine life.
  – Mangroves provide >10% of essential dissolved carbon in the oceans – influences global warming
  – Mangrove wetlands have a more simple composition than the average tropical forest and may allow the use of remote sensing to detect anomalies
Using remote sensing to detect heavy metals in substrate of mangroves

- The problem has three parts:
  - Contamination in substrate?
    - Chemical analyses of the “soils”
  - Do the contaminants influence the leaves?
    - Chemical analyses of the top leaves
    - Measuring reflectance spectra of the top leaves
  - Can we see the difference using satellite images?
    - Comparing reflectance spectra of contaminated and non-contaminated mangroves
    - Process the satellite images
Remote sensing to monitor mangroves for metal contamination

The proposed research:

- Using selected mangrove areas
  - Chemical analyses of the “soils” (As, Cd, Cr, Pb, Hg, Ni, Co)
  - Analyse top leaves of canopy
    - Chemical analyses of the top leaves
    - Measuring reflectance spectra of the top leaves
  - Compare reflectance spectra of contaminated and non-contaminated mangroves
  - Process the satellite images using the differences in reflectance
- If successful:
  - Write a protocol to process the images and discern possibly contaminated areas
  - Enter data in GIS as guide to monitors
Some pilot projects

– Comparison of known heavy metal contaminated mangroves with non-contaminated mangroves
– Joyuda Lagoon next to Ni-Co laterite
– Guayanilla reported Hg contamination
– Arecibo in watershed with porphyry copper deposits
– Guanica and Punta Ballena pristine

Using remote sensing to detect heavy metals in substrate of mangroves
Using remote sensing to detect heavy metals in substrate of mangroves

Sampling substrate and leaves from the top of the canopy

Scanning the standard and the leaves with the GER 1500 spectroradiometer
Guayanilla: Close to industry

Arecibo mangrove, next to urbanization, sewage treatment plant and electrical substation

Punta Ballena: Pristine mangrove
Guayanilla: Mangrove reflectance patterns

average NDVI red  0.60
average NDVI black 0.71
average NDVI white  0.75
Chemical analyses

**Cu vs Ni in sediments**

Joyuda next to Ni-Co laterite

- **Guananilla**
- **Guanica**
- **Arecibo**
- **Joyuda**

Contamination?
Co vs Cu in sediments

Joyuda next to Ni-Co laterite

Arecibo & Guayanilla Contamination?

Co

0 2 4 6 8 10 12 14 16 18 20

Cu

0 50 100 150 200

Guayanilla
Guanica
Arecibo
Joyuda
Average NDVI (all mangroves)

NDVI vs Ni in leaves Joyuda

Black mangrove

Red mangrove
• Acknowledgments
  – Dr. Arturo Massol
  – Ms. Elba Diaz